Automatic Bayesian inference for LISA data analysis strategies
نویسندگان
چکیده
We demonstrate the use of automatic Bayesian inference for the analysis of LISA data sets. In particular we describe a new automatic Reversible Jump Markov Chain Monte Carlo method to evaluate the posterior probability density functions of the a priori unknown number of parameters that describe the gravitational wave signals present in the data. We apply the algorithm to a simulated LISA data set containing overlapping signals from white dwarf binary systems and to a separate data set containing a signal from an extreme mass ratio inspiral. We demonstrate that the approach works well in both cases and can be regarded as a viable approach to tackle LISA data analysis challenges.
منابع مشابه
A One-Stage Two-Machine Replacement Strategy Based on the Bayesian Inference Method
In this research, we consider an application of the Bayesian Inferences in machine replacement problem. The application is concerned with the time to replace two machines producing a specific product; each machine doing a special operation on the product when there are manufacturing defects because of failures. A common practice for this kind of problem is to fit a single distribution to the co...
متن کاملA Markov Chain Monte Carlo approach to the study of massive black hole binary systems with LISA
The Laser Interferometer Space Antenna (LISA) will produce a data stream containing a vast number of overlapping sources: from strong signals generated by the coalescence of massive black hole binary systems to much weaker radiation form sub-stellar mass compact binaries and extreme-mass ratio inspirals. It has been argued that the observation of weak signals could be hampered by the presence o...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملA Disease Outbreak Prediction Model Using Bayesian Inference: A Case of Influenza
Introduction: One major problem in analyzing epidemic data is the lack of data and high dependency among the available data, which is due to the fact that the epidemic process is not directly observable. Methods: One method for epidemic data analysis to estimate the desired epidemic parameters, such as disease transmission rate and recovery rate, is data ...
متن کاملRisk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008